Yellow

No

TEMAFAST ECONOMY

The economic version of jointing

of organic fibres with mixture NBR/

This grade has wide area usage

in all sorts of industries at lower

manufactured from mixture

SBR rubber binder.

parameters.

Germanischer Lloyd

NON-ASBESTOS GASKETING MATERIAL Compressed fibre jointing sheets

General data

Standard sheet size:

1,5 x 1,5 m 1,5 x 1,0 m Another sheet sizes are available upon the customer request.

tolerance

Standard thickness: 0,4; 0,5; 0,8; 1,0; 1,5; 2,0; 3,0; 4,0; 5,0 mm with wire insertion 0,8; 1,0; 1,5; 2,0; 3,0; 4,0; 5,0 mm

± 2 %

Colour

Wire insertion

Description

Range usage

Certification

Thickness tolerances: 0,4 – 0,8 ± 0,1 mm

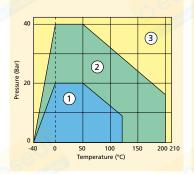
1,0-5,0 ± 10 %

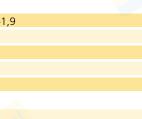
Surface:

All jointings are produced with an antistick surface on one side.

			KTW , GOST, PZH	KTW, PZH Poland, GOST		
Technical data						
Marking according	DIN 28 091-2		FA-Z-12-0	FA-MZ-1-0		
Marking according	ASTM F 104		F712 120 M4	F712 120 M4		
Max. temperature*	peak	°C	210	210		
	continual	°C	140	140		
Max. pressure*		Bar	40	40		

Typical parameters of 2 mm thickness jointing


	-	-			
Density	DIN 28090-2	g/cm³	1,7-2,1	1,6-1,9	
Compressibility	ASTM F 36	%	12	18	
Recovery	ASTM F 36	%	50	50	
Residual stress (1	75°C) DIN 52 913	≈ MPa	20	20	
Gas leakage $\lambda_{2,0}$	DIN 3535-6/99	≈ mg/(m*s)	0,1	0,1	
Fluid resistance - thickness increase					
Oil IRM 903 (5h/1	150°C) ASTM F 146	%	15	5	
ASTM Fuel B (5h/	/23°C) ASTM F 146	%	15	10	


1 – suitable area (even for steam application)

2 – suitable extended area, technical advice is recommended

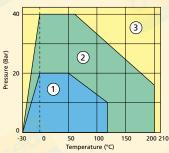
3 - for this area technical consultation is mandatory

*Maximum temperature and pressure values can not be used simultaneously.

TEMAFAST

Basic jointing manufactured from organic fibres with NBR binder.

This grade has wide industrial usage


at lower medium temperature and

pressure parameters.

Germanischer Lloyd

Red

No

GASKET AND SEALING TECHNOLOGY

Blue

Yes

surface.

area.

PZH

General data

Standard sheet size: 1,5 x 1,5 m 1,5 x 1,0 m Another sheet sizes are available upon the customer request.

tolerance

±2%

Colour

Wire insertion

Description

Range usage

Certification

Standard thickness:

0,4; 0,5; 0,8; 1,0; 1,5; 2,0; 3,0; 4,0; 5,0 mm with wire insertion 0,8; 1,0; 1,5; 2,0; 3,0; 4,0; 5,0 mm

Thickness tolerances: 0,4-0,8 ± 0,1 mm 1,0 - 5,0 ± 10 %

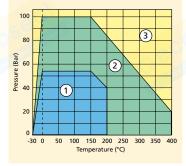
Surface:

All jointings are produced with an antistick surface on one side.

Technical data

Marking according	DIN 28 091-2		FA-MA-1-0 (ST)	FA-M-1-0 (ST)
Marking according	ASTM F 104		F712 111 M5 (M7)	F712 111 M6 (M7)
Max. temperature*	peak	°C	400	450
	continual	°C	250 (steam 200)	330 (steam 250)
Max. pressure*		Bar	100	120

Typical parameters of 2 mm thickness jointing


	Density	DIN 28090-2	g/cm ³	1,7-2,0	1,7-2,0		
	Compressibility	ASTM F 36	%	10	10		
	Recovery	ASTM F 36	%	50	55		
	Residual stress (175°C)	DIN 52 913	≈ MPa	30	32		
	Gas leakage $\lambda_{2,0}$	DIN 3535-6/99	≈ mg/(m*s)	0,06	0,04		
Fluid resistance - thickness increase							
	Oil IRM 903 (5h/150°C)	ASTM F 146	%	3	3		
	ASTM Fuel B (5h/23°C)	ASTM F 146	%	5	5		

1 – suitable area (even for steam application)

2 – suitable extended area, technical advice is recommended

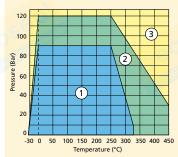
3 – for this area technical consultation is mandatory

*Maximum temperature and pressure values can not be used simultaneously.

Light blue

Yes Superior performance copressed jointing material incorporating a blend of special heat resistant aramid fiber and high quality nitrile rubber binder. Completely fresh ecological type of sheets suitable for elevated temperature and steam applications, exhibiting excellent gas sealability. Due to its composition of high qualtiy raw mate-

TEMASIL HT


rials, this particular grade is used in petrochemical, chemical and food industries, wide area of machinery. It is suitable for oils, fuels, lubricants, alcohol, gases, hydrocarbons, water, cooling liquids, and most diluted acids and alkalies. DVGW

procedures are under process

FA-M-1-0 (ST)				
F712 111 M6 (M7)				
450				
330 (steam 250)				
120				

1,7-2,0	
10	
55	
32	
0,04	

GASKET AND SEALING TECHNOLOGY

TEMASIL - NEW GENERATION

The new generation of high quality

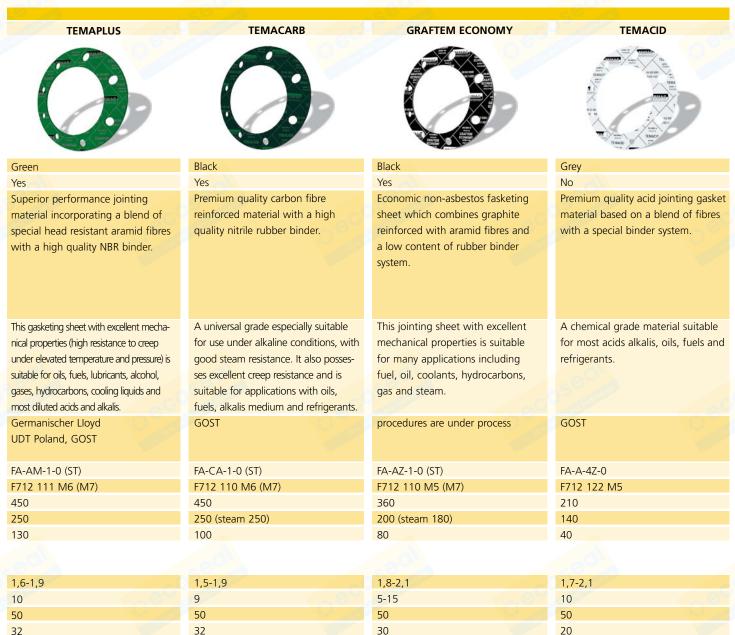
material based on a blend of special

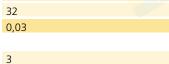
other agents with NBR. It is easy to

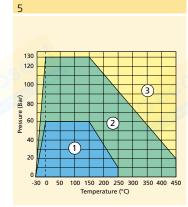
This general purpose jointing sheet is

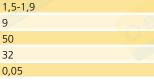
regardful of environment and can be

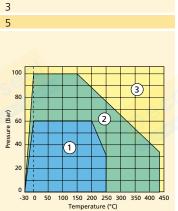
used in the wide range of industries

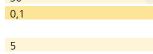

such as petrochemical, chemical,

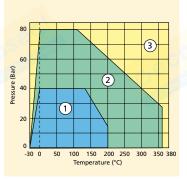

procedures are under process

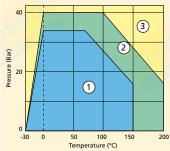

food and oil as well as engineering


temperature resisting fibres and


cut due its flexibility and smooth







10

16% Sulphuric acid (96%) 15% Hydrochloride acid (36%) 7% Nitric acid (50%)

0,1

GASKET AND SEALING TECHNOLOGY

Chemical resistance table

	NON	-ASBES	STOS	GASK	ETING	MAT	ERIAL		
					HT TEMOPH				
				ò	atio				
Chemical resistance table		tenate C	י	Gene				Leonomy Tenacid	
	99	×+ ⁰	×	New	HITEmapli	5	0	4CON	
	2813	ala	25 2351	2351	201	15 Temaca	ren	acio	
	ren	ren	Lett.	Let.	1en.	ren	Gran	ren	
Acetic acid 100%	С	С	А	А	А	А	А	A	
Acetone	В	В	В	В	В	В	В	A	
Acetylene	А	А	А	А	А	А	А	А	
Air	А	А	А	А	А	А	А	А	
Aluminium chloride	А	А	А	А	А	А	А	А	
Ammonia	В	В	А	А	А	А	А	А	
Ammonium hydrogenphospate	В	В	А	А	А	А	А	А	
Barium chloride	А	А	A	A	A	A	А	А	
Benzene	В	В	A	Α	Α	A	А	A	
Boric acid	В	В	A	A	A	A	A	A	
Calcium hydroxide	B	B	A	A	A	A	A	A	
Carbon dioxide	A A	A A	A	A	A	A A	A	A	
Copper sulphate	C	C	A	A	A	A	A	A	
Cyclohexanol	В	В	A	A	A	A	A	A	
Cyklohexanon	C	C	В	В	В	В	В	В	
Di-butyl phtalate	A	A	A	A	A	A	A	A	
Ethyl ether	В	A	A	A	A	A	A	A	
Ethylen	А	А	А	А	А	А	А	А	
Ethylene glycol	В	В	А	А	А	А	А	А	
Formic acid 10%	В	В	А	А	А	А	А	А	
Glycerine	А	А	А	A	А	А	А	А	
Hydraulic oil(mineral)	В	В	А	А	A	А	А	A	
Hydrogen chloride dry	В	В	A	А	Α	А	А	A	
Hydrochlorid acid 20%	С	С	В	В	А	А	В	А	
Chlorine dry	В	В	A	Α	A	A	A	A	
Chloroform	С	C	B	В	В	В	В	B	
lso-Octane	B B	B	A	A	A	A	A	A	
Kerosene Methylene chloride	C	B C	A C	A C	A C	A C	A C	A C	
Natural gas	A	A	A	A	A	A	A	A	
Nitric acid 20%	C	C	C	C	C	B	C	A	
Nitrogen	A	A	A	A	A	A	A	A	
Petrol	В	В	A	A	A	A	A	A	
Petroleum	В	В	A	A	А	A	A	A	
Phenol	С	С	С	С	С	С	С	В	
Potable water	А	А	А	А	А	А	A	А	
Potassium cyanide	В	В	А	Α	А	А	А	А	
Potassium iodide	А	А	А	А	А	А	А	A	
Saturated steam	В	В	А	А	А	А	А	В	
Silicon oil	В	В	А	А	А	А	А	A	
Sodium carbonate	A	A	A	А	A	Α	Α	A	
Sodium hydrogen carbonate	В	В	A	A	A	A	A	A	
Sodium hydrogen sulphite	B	B	A	A	A	A	A	A	
Sodium hydroxide	B	B	B	B	B	B	B	A	
Sodium culphate	A A	A A	A A	A A	A	A A	A A	A	
Sodium sulphate Sugar	A	A	A	A	A	A	A	A	
Sulphuric acid 65%	C	C	C	C	C	C	C	A	
Tartaric acid	A	A	A	A	A	A	A	A	
Tetrachlormethane	С	С	В	В	В	В	В	В	
Toluene	C	C	A	A	A	A	A	A	
Transformer oil	В	В	А	А	А	А	А	А	
Turpentine	А	А	А	А	А	А	А	А	
Xylene	В	В	А	А	А	А	А	А	

A-recomended B-suitability depends on conditions C-not suitable

If another medium is applied please contact our technical department.

